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Abstract

Over the years, the growth of storage capacities, computing performance, and the distri-
bution of the Internet have lead to new possibilities in sciences like astrophysics. Large
telescope arrays and sensor networks can record petabytes of data. Due to the expo-
nential growth, this data cannot be processed at once and on site. So-called e-sciences
share their distributed resources, cooperate in processing their data, and gain new re-
sults by cross-correlating data from different sources. As an alternative to centralized
approaches, we have developed HiSbase, a prototype supporting astrophysical analysis
and cross-correlation of multiple spatial catalogues. Based on a peer-to-peer system, nu-
merous computers distributed all over the world can participate in HiSbase sharing not
only storage capacity or computing resources, but also their main memory. Scientists can
query the spatial catalogues at any participating node without having to regard the distri-
bution of the data within the HiSbase network. In addition, a spatial cross-match allows
them to easily correlate information from different sources.
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Chapter 1

Motivation

The beginnings of the Internet have been shaped by universities and research organiza-
tions sharing their computing resources. Over the years, the growth of storage capacities,
computing performance, and the distribution of the Internet have lead to new possibilities
in some sciences like astrophysics, geophysics, climatology, or meteorology. Telescopes
and sensors can be combined to form large telescope arrays and sensor networks which
can record petabytes of data. Due to the exponential growth, this data can no longer be
processed at once and on site. This lead to the development of so-called e-sciences where
research groups share their distributed resources, cooperate in processing their data, and
gain new results by cross-correlating data obtained from different sources. Centralized
approaches like data warehouses used for processing and cross-correlation suffer from ex-
pensive data shipping to the centralized site, huge data volumes not even partially fitting
into main memory, and an overwhelming amount of queries. As an alternative, decen-
tralized grid-based systems can offer better performance. A grid coordinates resources
at decentralized locations and under decentralized control using standardised and open
interfaces to provide nontrivial qualities of services [Fos02]. In contrast to the central-
ized approach where data is collected at a central site for computing and the results are
distributed afterwards, the grid approach distributes the computing resources of all par-
ticipants among them.

Using grid technologies, we want to develop HiSbase, a prototype supporting astro-
physicists in analyzing and cross-correlating multiple catalogues with spatial data. These
catalogues are recorded by various telescopes and satellites measuring different spectra
and use the equatorial coordinate system for object positioning: the right ascension (RA)
in horizontal direction from 0◦ up to 360◦ and the declination (DEC) in vertical direction
from −90◦ up to 90◦ as shown in figure 1.1. Based on a peer-to-peer (P2P) system1,
numerous computers distributed all over the world will be able to participate in HiSbase
sharing not only storage capacity or computing resources, but also their main memory. In
addition, we will support cross-correlation by implementing a spatial cross-match which
provides scientists with a near-a-point search in several catalogues. This allows researchers
to easily combine information from different sources with a certain error of measurement
and to gain new results from an improved point of view.

1.1 Typical data distribution in e-sciences: Data skew

A typical phenomenon in natural sciences like astrophysics is that the observed objects
are not uniformly distributed. On the one hand there are clusters of densely populated

1Several P2P implementations will be discussed in chapter 2.
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Figure 1.1: The equatorial coordinate system

Figure 1.2: Astrophysical data with irregular distribution

regions; on the other hand there are wide and nearly unpopulated2 regions. An example
of such skewed data is shown in figure 1.2. This so-called data skew will be handled
by HiSbase in a way that allows us to evenly distribute the data over the participating
nodes by the use of equi-depth histograms. These histograms will have to be created from a
representative data set3 before setting up the network. In contrast to the traditional usage
of peer-to-peer systems as distributed hash tables (DHT), we will utilize the histogram as
a hash function to map the spatial objects on logical regions.

1.2 Typical query patterns: Region-based queries

Region-based queries are another typical feature supported by HiSbase. This means that
queries include a predicate which focuses them at a specified region which is of special
interest for the scientist. Examples of such scenarios are meteorology where weather
conditions like rainfall or atmospheric pressure of a country or continent could be of

2At least scientists currently do not know about objects within these regions.
3The representative data set can be a randomly chosen subset of the already mentioned catalogues.
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1.3. INCREASING THROUGHPUT

interest, astrophysics where the radiation output and wavelengths of certain spatial objects
or regions are analyzed, or geology where the regional occurrence and concentration of
minerals might be in the focus of researchers.

1.3 Increasing throughput

The first major goal of the HiSbase project is to realize an increased throughput within
a HiSbase network consisting of several nodes compared to a single HiSbase node. This
is done by distributing the data on all participating nodes while preserving locality. In
traditional peer-to-peer implementations each data object would be individually mapped
onto the peer-to-peer system which in our case destroys locality. HiSbase maps spatial
regions onto the peer-to-peer system and hence preserves locality. The distribution of
the data among all nodes reduces the amount of data managed by a single node and
therefore increases the chance that repeatedly queried data can be held in main memory.
In addition, the same spatial regions from different catalogues are mapped onto the same
node and therefore HiSbase can cross-correlate different catalogues directly on the nodes
holding the data.

3
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Chapter 2

Overview on relevant technologies

This chapter will give you a short overview on the major components and technologies
we considered or used for HiSbase. We will start with a discussion of some peer-to-peer
networks which will be used as the infrastructure for communication in HiSbase. Then we
will have a glance at the topic of space-filling curves which represent data structures nec-
essary for the distribution of data within the project. After that we will address a method
for spatial cross-matching within SQL which is an essential part for the applicability in
the astrophysics community. Finally we will focus on some database management systems
considered as database backend for the project.

2.1 Peer-to-peer networks

Since about 1999, several peer-to-peer networks have been developed, mostly as a platform
for file-sharing via the Internet. The peer-to-peer model was a new approach to networking,
since it did not conform to the established client-server models like a web browser retrieving
web pages from a server. In a peer-to-peer network, each participating node is a server as
well as a client.

The existing peer-to-peer networks can roughly be divided into a first generation of peer-
to-peer-systems like Kazaa [KAZ07], Gnutella [GDF07], and Freenet [Cla99] and a second
generation like CAN [RFH+01], Chord [SMK+01], Pastry [RD01], and Tapestry [ZHS+04].
Some publications use a three-generation model with Napster being a representative of the
first generation, but Napster uses a hierarchical approach with an index-server used by all
participating nodes and therefore does not fit into a plain peer-to-peer schema.

While the first generation of peer-to-peer systems has widely spread due to several
file-sharing networks, the second generation focuses on efficient1 data structures and al-
gorithms. The evolution of peer-to-peer systems leads to the possibility of sharing the
distributed computing resources among all participants, which is of great interest for the
e-science community. A major portion of the success of peer-to-peer systems is also due
to their self-organizing architecture, allowing them to compensate outages and congestion
of peers or links.

Every peer-to-peer system is based on two essential protocols:

• network management protocol

• data management protocol

1Efficiency in the sense of reducing bandwidth utilization and the number of hops to reach a certain node.
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The network management protocol allows nodes to join and leave the peer-to-peer net-
work. For joining a network, the new node has to know at least one node already par-
ticipating in the network. This node will be used as a so-called bootstrap node and will
receive a join request from the new node. The join request initiates the reorganisation
of the neighbourhood and the distributed index. In most peer-to-peer systems, there is
no method for gracefully2 leaving the net, because outages usually occur without prior
announcement. Hence the network management protocol is also responsible for detection
of nodes leaving the network and again the reorganisation of the neighbourhood and the
index.

The data management protocol allows peers to send, forward, and receive messages and
— using such messages — to add, remove, and look up data in the peer-to-peer network.

Peer-to-peer systems basically appear in three different flavours [DZD+03]:

• as distributed hash table (DHT) supporting addition, removal, and lookup of data
referenced by keys

• as distributed object location and routing (DOLR) mechanism allowing message
delivery to a node nearby and not exactly matching an object’s key

• as group multicast or anycast providing scalable communication and coordination in
large and highly dynamic groups

In the following sections, we will focus on the second generation of peer-to-peer systems
due to their improved efficiency and we will limit the discussion to Chord, Pastry, and
Tapestry, because they have a comparable key space. CAN on the other hand uses an
n-dimensional torus as key space and therefore has not been considered for the HiSbase
project.

2.1.1 Chord

Chord assigns keys, respectively IDs — calculated with the SHA-1 algorithm [EJ101] to
ensure consistent hashing — to each participating node and to each stored object. These
keys are mapped onto a one-dimensional circular key space with at maximum 2m entries.
For simple routing, each node knows its direct successor, i.e. the next node clockwise on
the ring. This information is already sufficient to support routing to any participating
node. A message to a key travels from the sender over the successor to the successor’s
successor and so on until it reaches the destination. The destination is either the node
having the exact key or the node having the smallest key which is still greater than the
message’s destination key.

To reduce the number of hops during the travel of a message, the nodes store additional
routing information, the so-called finger table, with up to a limited amount of entries.
Each entry i contains a pointer to the node with distance 2(i−1); the distance between
two entries in the finger table grows at the power of 2. Therefore the number of hops a
message has to visit in a network consisting of n nodes before reaching the destination is
O(log n) with high probability.

When a message is sent to a specific key, Chord searches the finger table for the node
with the highest key preceding the destination key and routes the message to that node,
which — if necessary — repeats the routing step or processes the message itself.

2To gracefully leave a net means to follow a specified protocol for terminating the connection to the other
nodes.

6
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0110 1320 3203

2101 2232 2320

2002 2020 2031

2010 2011 2012

Figure 2.1: Simplified Pastry routing table

2.1.2 Pastry

Pastry again uses a one-dimensional circular key space as Chord does. Messages can be
routed to any key in the key space. The destination of a message is either the node with
the specified key or the node with the key closest to the destination key.

In contrast to Chord, Pastry maintains three tables with routing information and a
routing metric which represents the ”distance” between nodes, e.g. the round trip time of
messages.

• The leaf set contains l entries, with l/2 being the neighbouring nodes clockwise on
the ring and the other l/2 being the neighbouring nodes counter clockwise on the
ring.

• The neighbourhood set represents the m closest nodes in terms of the routing metric.
It is used to maintain locality in the routing process.

• The routing table consists of dlog2bNe rows with 2b−1 entries in each row. All entries
at row n refer to nodes whose IDs share the first n digits with the local node’s ID
but whose (n+1)th digit has one of the 2b−1 possible values other than the (n+1)th

digit in the local node’s ID. A simplified illustration of a Pastry routing table for a
node with ID 2013 is shown in figure 2.1.

When a message is sent to a specified key, the node first searches the leaf set for a
matching node and directly delivers the message to that node. If the search in the leaf set
was not successful, the node searches its routing table for another node whose key shares
a longer prefix with the destination key than the node itself does. If this also fails, a node
from the routing table whose key has the same prefix length but is numerically closer is
selected.

2.1.3 Tapestry

Tapestry is an approach closely related to Pastry, having some differences. Like Pastry,
Tapestry uses a prefix routing mechanism but without considering an additional metric to
improve routing between certain nodes.

When a message is sent to a specified key, the sending node considers the leftmost digit
and chooses another node having the same leftmost digit as the next hop. Intermediate
nodes first determine the i leading digits they have in common with the destination key
and then choose a node with i + 1 common digits as the next hop.

7
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As a special improvement to distributed object location and routing systems (DOLR),
Tapestry uses the publish mechanism to store a copy of the object to be published at
each node on the way between the publishing node and the node maintaining the assigned
key. These copies increase the speed of later object look-ups, when the look-up message
is routed over one of the nodes having a local copy. This mechanism is called surrogate
routing.

2.1.4 The Common API

Each of the mentioned peer-to-peer systems has a different API and they have been de-
veloped with slightly different requirements in mind. As a result, applications being de-
veloped based on one of the peer-to-peer systems cannot be easily migrated to another
system unless the developer provides an abstraction layer. The Common API [DZD+03]
is an approach to define such an abstraction layer and allow applications based on the
Common API to change the underlying peer-to-peer system without serious changes to
the code. Due to the different orientations of the various peer-to-peer systems — some
focus on their application as DHT, others as DOLR — the Common API attaches not on
top of those systems but on the so-called key-based routing (KBR) layer, which represents
the common denominator of all peer-to-peer systems.

2.2 Space-filling curves

A detailed discussion of space-filling curves would be far beyond the scope of this work.
In this section, we will focus on some special space-filling curves and on their applicability
to the HiSbase project. For extensive information on space-filling curves we recommend
[Sag94].

At the end of the 19th century, Giuseppe Peano (1858-1932) first described space-filling
curves as continuous curves completely filling an n-dimensional space. Usually, each space-
filling curve consists of a generator curve whose sections can be repeatedly replaced by
scaled copies of itself which leads to a more and more detailed space-filling curve. Examples
of such generator curves in 2-dimensional space and the resulting space-filling curves after
some steps of iteration are shown in figure 2.2, 2.3, and 2.4. As we currently need space-
filling curves in HiSbase only for the linearisation of a 2-dimensional space, the following
examples will be limited to non-overlapping continuous curves on planar surfaces.

2.2.1 Hilbert curve

David Hilbert (1862-1943) was the first to describe a general geometric generating algo-
rithm [Hil91] which covers a whole class of space-filling curves.

“If the interval I can be mapped continuously onto the square Q, then after partitioning
I into four congruent subintervals and Q into four congruent subsquares, each subinterval
can be mapped continuously onto one of the subsquares. Next, each subinterval is, in
turn, partitioned into four congruent subintervals and each subsquare into four congruent
subsquares, and the argument is repeated.” [Sag94]

With the space-filling curve shown in figure 2.2, Hilbert demonstrated that the sub-
squares can be arranged in such a way that adjacent intervals correspond to adjacent

8
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subsquares and that all subintervals of an interval I correspond to subsquares of a square
corresponding to I.

Figure 2.2: Hilbert curve with three iteration steps

Another space-filling curve based on Hilbert’s curve has been described by Eliakim
Hastings Moore (1862-1932). Moore’s version of the Hilbert curve is shown in figure 2.3
and demonstrates the possibility of ending the curve at the same point where it started
while Hilbert’s curve ended at the opposite of the starting edge.

Figure 2.3: Moore’s version of the Hilbert curve with three iteration steps

It is easy to see that both versions require changing the orientation of the generator
curve during the iterations.

2.2.2 Z-curve

Another class of space-filling curves has been described by Henri Leon Lebesgue (1875-
1941). The Lebesgue- or Z-curve does not require subsquares corresponding to adjacent
intervals to be adjacent themselves. This can easily be seen in figure 2.4 where the right-
upper square of the generator curve shares no edge with the left-lower square but both
squares correspond to adjacent intervals.

Note that the Z-curve in contrast to Hilbert’s and Moore’s curves does not require
changing the orientation of the generator curve during the iterations.

9
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Figure 2.4: Z-curve with three iteration steps

Figure 2.5: Z-quadtree

2.2.3 Z-quadtree

In 1974, Raphael A. Finkel and Jon Louis Bentley introduced a data structure called
quadtree [FB74] to support composite database indexes which are of special interest for
applications processing spatial data. Based on the idea of using a data structure like
search trees for two-dimensional data, quadtrees recursively partition the data space into
four disjoint spaces. The recursion for each partition will continue until a certain condition,
e. g. when the number of data objects within the partition falls below a specified limit, is
met. The resulting regions of the quadtree can then be linearised by applying the Z-curve
ordering algorithm as shown in figure 2.5. A detailed description of the implementation
and usage of quadtrees in the HiSbase project is available in [Bau07].

2.3 Spatial cross-matches

As already mentioned in chapter 1, the ability to correlate data from various catalogues
is of special interest for astrophysicists. This allows scientists e. g. to consider several
radiation spectra when categorizing a newly found spatial object and hence determine a
bunch of physical attributes of the object at once instead of having to gain this information
step by step. Due to variances between all catalogues resulting e. g. from atmospheric

10
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Figure 2.6: Near-a-point search around the object in the centre

flickering, different weather conditions, or imprecise mechanics, it is not possible to use an
exact match algorithm for cross-matching. Instead, one has to do a near-a-point search to
find objects within a certain distance to the initial object in other catalogues. Intuitively,
this near-a-point search could be done by selecting all objects within a specified radius
around the initial object as shown in figure 2.6, but this does not work using equatorial
coordinates because the RA-axis gets condensed the closer the DEC-axis gets to 90◦ or
−90◦, respectively. Instead, we can use Cartesian coordinates on the unit sphere to avoid
this problem.

Due to the processing effort of cross-matching outside of SQL, Jim Gray et. al. [GNSS06]
introduced a method for cross-matching objects without leaving SQL. In addition, it is ex-
pensive to do complex mathematic operations on a bigger data set. Hence their algorithm
works in three steps as shown in figure 2.7. It tries to narrow down the amount of data
within the first two steps by limiting the equatorial RA- and DEC-ranges to a rectangle
around the initial point with basically an edge having twice the length of the cross-match
radius. See lines 4 and 5 of listing 2.1 for the limitation of the RA- and DEC-ranges. In the
last step, the cross-match switches to Cartesian coordinates on the unit sphere and fetches
all objects left within the cross-match radius with the expression in line 6 of listing 2.1.

1 select ...
2 from catalogue1 as c1 left outer join catalogue2 as c2
3 on
4 abs(c1.ra-c2.ra) < r and
5 abs(c1.dec -c2.dec) < r and
6 (c1.x*c2.x+c1.y*c2.y+c1.z*c2.z) < cos(radians(r))

Listing 2.1: A simple cross-matching algorithm without leaving SQL

Please note that for a “real world cross-match” the RA-range has to be stretched when
the DEC-range gets closer to the polar regions. This leads to the following SQL expression
describing a cross-match with a modified first step at line 4 to 7:

1 select ...
2 from catalogue1 as c1 left outer join catalogue2 as c2
3 on
4 abs(c1.ra-c2.ra) < case when abs(c1.dec)+r > 89.9 then 180
5 else degrees(abs(atan(sin(radians(r)) /

11
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Figure 2.7: Cross-match algorithm in three steps

6 sqrt(abs(cos(radians(c1.dec -r)) *
7 cos(radians(c1.dec+r))))))) end and
8 abs(c1.dec -c2.dec) < r and
9 (c1.x*c2.x+c1.y*c2.y+c1.z*c2.z) < cos(radians(r))

Listing 2.2: A cross-matching algorithm with correct handling of polar regions

2.4 Database management systems

Although the database management system used within HiSbase is one of its main com-
ponents, we will not provide an in-depth discussion, because HiSbase is meant to be
independent of specific database management systems and SQL implementations. The
necessity of a database management system results from the demand for a standardised
relational query language which is provided by SQL and the ability to store large data
sets and allow efficient access to them.

The following database management systems have been taken into consideration during
the HiSbase project:

• HSQLDB
HSQLDB [HSQ07] is a relational database management system based on Java [SJ07].
It can operate as a standalone database server as well as a database integrated into
other Java-based applications. Tables can be created as temporary tables being held
only in memory or as persistent tables with different methods of storage and caching.
The major drawback of HSQLDB 1.7.3 is the unavailability of “less than” or “greater
than” operators in JOIN-clauses, which makes it impossible to implement the spatial
cross-match discussed in section 2.3.

• IBM DB2
IBM DB2 [DB207] is a commercial relational database management system. Sev-
eral versions are offered for different commercial deployment scenarios. In 2006,
IBM added the free version “IBM DB2 Express-C” which is available at http:
//www-306.ibm.com/software/data/db2/express/. IBM DB2 operates as a stan-
dalone database server and cannot be integrated into Java applications.

• Apache Derby
Apache Derby [ADD07] is another relational database management system imple-
mented in Java. Like HSQLDB, it can be run standalone or be embedded in other
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Java-based software. A restriction on the complexity of WHERE-clauses has shown
up as a disadvantage in the HiSbase project, as it limits the number of regions a
single HiSbase node could handle. We did not yet manage to determine the exact
number of conditions in the WHERE-clause which is allowed with Apache Derby.

Due to the drawbacks and disadvantages of HSQLDB and our experiences with IBM DB2
during previous projects, we decided to use IBM DB2 during the first steps of development.
Nevertheless it is one goal of the HiSbase project to allow different database management
systems. A setup with several HiSbase nodes using Apache Derby is considered for the
near future.

13
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Chapter 3

Architecture and design of HiSbase

The following chapter will present details on the architecture and the design of HiSbase,
especially the steps necessary for data staging and query processing.

3.1 Preparations

Before diving into the preparation of the HiSbase system, we have to define some as-
sumptions concerning the data we want to handle with the HiSbase project. HiSbase is
developed as an application supporting astrophysicists, so we will support astrophysical
catalogues. The data in each catalogue has to include RA- and DEC-values according to
the equatorial coordinate system to support the query windows which have already been
mentioned in chapter 1. Furthermore, the catalogues also have to include X, Y and Z val-
ues for each object which represent the Cartesian coordinates on the unit sphere. These
values are necessary for the cross-matching algorithm. If these values are not included in
a catalogue, they can be calculated, using the following SQL command [Sch05]:

1 update catalogue set
2 x = cos(radians(dec)) * cos(radians(ra)),
3 y = cos(radians(dec)) * sin(radians(ra)),
4 z = sin(radians(dec))

Listing 3.1: Calculating Cartesian coordinates from equatorial coordinates

Before being used in HiSbase, the catalogues have to be made available in a database
archive supporting SQL. In our case, we will utilize IBM DB2 [DB207] as the database
management system on the archive as well as on each of the HiSbase nodes. After importing
and preparing the spatial catalogues, we are ready to define the distribution of the data
on our HiSbase nodes.

3.1.1 Creating the histograms

As already mentioned in chapter 1, HiSbase is a distributed application based on a P2P
system. The P2P system of our choice has been FreePastry [FP07] because of the possi-
bility of using a proximity metric which can improve routing performance.

Traditional P2P applications use a distributed hash table (DHT) for mapping objects
on keys, IDs, or nodes. The application of a traditional hash function on objects specified
by equatorial coordinates would possibly lead to objects with neighbouring coordinates
being distributed among several nodes. In our case, this is not useful because we want to
preserve the spatial locality of our astrophysical data. This locality allows us to reduce
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Figure 3.2: Region generation with a Z-quadtree

the number of HiSbase nodes involved in a query in contrast to a traditional DHT where
a query would require to be processed on several nodes. As replacement for the DHT we
use a histogram structure which partitions the space into regions. The regions are either
generated using Z-curve intervals as shown in figure 3.1 or using the leaves of a Z-quadtree
as shown in figure 3.2.

To handle the data skew already mentioned in chapter 1, the chosen histogram technique
has to be trained using a representative data set. During this training phase, we want to
realize an even distribution of the data among all regions. Ideally, we would get a histogram
having several regions with each of them comprising approximately the same amount of
data. After distributing this histogram to each HiSbase node, we can launch the HiSbase
network by starting a first node and using it as bootstrap node for the others.

Note that the regions as well as the HiSbase nodes are mapped onto the same P2P key
space (see figure 3.3) and therefore both are assigned IDs. FreePastry’s routing mechanism
allows us to send messages to a region instead of the node maintaining the region. This
is necessary because in the distributed HiSbase environment a node neither knows what
regions are assigned to the other nodes nor which other nodes beyond its neighbourhood
exist.
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Figure 3.3: A pastry ring with 8 regions, initially 3 nodes and one newly joining node

3.1.2 Staging the data

Now that we have a HiSbase network, we need to equip the nodes with the data. The
data staging is not only necessary after start-up but also when the assignment of regions
to nodes changes at runtime. This is caused by other nodes joining or leaving the HiSbase
network.

To stay up-to-date concerning the assignment of regions, each of the nodes monitors its
leaf set which is automatically updated by the P2P system during joins or leaves. If a
node experiences a change within its leaf set, it has to discover if there has been a change
to the set of regions assigned to the node, as shown in figure 3.3. In that case, the node
has to recalculate the borders of its regions, connect to the database archive, and retrieve
the data lying within the calculated borders from the subscribed catalogues. To prevent
this possibly time-consuming task from occurring too often, the nodes will wait some time
after each change within the leaf set, because e. g. one node leaving the system might
rejoin within seconds or might be replaced by another node. Only if – after the timeout
– no additional changes have taken place, the further steps in the staging process will be
executed. During data staging, the HiSbase network is able to accept and process queries,
but the current implementation cannot ensure complete results.

3.2 Query processing

3.2.1 Installing and preparing the query

Once all participating HiSbase nodes have been equipped with their histograms, have
joined the system, and have retrieved the data belonging to their regions, HiSbase is ready
for processing queries at each of the nodes. A newly issued query is first parsed at the local
node to determine the query’s RA- and DEC-range. To realise this in an efficient manner,
we require RA and DEC to be specified within the WHERE clause using the BETWEEN
keyword. This allows us to easily extract the RA- and DEC-range.

1 select ...
2 from ...
3 where ra between r1 and r2
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4 and dec between d1 and d2

Listing 3.2: Allowed SQL-queries in HiSbase

To support wrap-around queries1 we have to enhance the syntax. When the given query
has r2 < r1, we can assume a wrap-around query. Due to the restrictions defined in
the SQL-specifications, we have to resolve the query after the detection of a wrap-around
query:

1 select ...
2 from ...
3 where ( ra between r1 and 360 or ra between 0 and r2 )
4 and dec between d1 and d2

Listing 3.3: Resolved wrap-around SQL-queries

Given the RA- and DEC-range, the node calculates all histogram regions affected by
the query. A histogram region is affected by the query if the intersection between the
histogram regions translated into a spatial area and the RA- and DEC-range of the query
is not empty. The way how the affected histogram regions are calculated depends on the
histogram type.

When using Z-curve histograms, we have to scale down the spatial area to the his-
togram’s resolution and can compute the Z-index with bit interleaving (see figure 3.4)
done on the scaled coordinates. Using these Z-indices, we can test the boundaries of each
histogram region and detect whether the individual histogram region is affected by the
query or not.

When using Z-quadtree histograms, the calculation of the affected histogram regions is
a top-down approach. In each step we test the area represented by the current Z-quadtree
histogram node for an intersection with the queried area defined by the RA- and DEC-
range. If there is an intersection and the current Z-quadtree histogram node is also a leaf,
the leaf is added. If it is no leaf, the whole test will be repeated for all quadrants of the
node. As result, we will get all Z-quadtree histogram leaves having intersections with the
queried area.

1Wrap-around queries leave the spatial coordinate system at one end and re-enter it at another end, e. g.
with ra = [359◦, 1◦].
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Now that we know the affected histogram regions, we choose one of the regions to be
the coordinator for the query processing. At this level of HiSbase we do not talk about
nodes, because we do not know which node is responsible for a specified region. The node,
being responsible for the region chosen as coordinator, will of course do the coordination
task, not the region.

3.2.2 Coordinating the query

After the coordinator election has taken place, the coordinator will receive a query message
from the node that has been accepting the query initially. This query message also contains
the set of affected regions. The coordinator now initializes its buffers necessary to keep
the individual parts of the result sets until all data has been retrieved. Then the query
message will be forwarded to each affected region, regardless of being handled by the same
or different nodes. During query processing — the steps necessary for query processing
are described in the next section — the coordinator waits for answer messages from the
affected nodes and stores them in its buffers until all outstanding answers have been
received. Finally an answer message containing all the buffered results from the affected
nodes is sent back to the node that has been accepting the query initially.

3.2.3 Processing the query

When the query message reaches an affected region, the node maintaining the region
can hand off the query contained in the message to the local SQL database management
system. The SQL database management system processes the query and returns a result
set. This result set is then sent back to the coordinator as the payload of an answer
message.

If the originally issued query affects more than one region, it is likely that one node
receives the same query message more than once because each node may maintain more
than one region. To handle this case, we keep track of already processed queries to prevent
unnecessary processing. This is done by saving a timestamp and a hash-value of the query
expression, before it is handed off to the database system. If timestamp and hash-value
are already known on the local node, the query message is identified as a duplicate and
consequently ignored. In addition, the coordinator has to be informed about the weight
of an answer message. The weight is the number of regions which are represented in the
answer message. It is important for the coordinator, because he might send out multiple
query messages to the same node but will only receive one answer message. The weight
allows the coordinator to detect when all affected regions have sent their parts of the
answer.
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Chapter 4

Implementation of the prototype

After we have laid out the architecture and the design of the HiSbase project in chapter 3,
we will focus on the implementation in this chapter. We will start with the P2P layer of
HiSbase which will provide the infrastructure for the communication between the HiSbase
nodes. This will be followed by a discussion of the HiSbase message hierarchy being used
for query processing and, after that, by a description of query processing itself. Finally
we will focus on the implementation of the data staging mechanism.

4.1 The P2P infrastructure

As already mentioned in chapter 3, we decided to utilize FreePastry [FP07] developed at
Rice University (Houston, Texas) as the P2P substrate for the HiSbase project. The major
portion of the P2P infrastructure will be provided by FreePastry. We will have to supply at
least a so-called driver class (the class HiSbase in figure 4.1) which is in java terminology
our application and a so-called application class (the class HiSbaseApp in figure 4.1) which
handles the messaging within HiSbase. In addition we need a special node ID factory (the
class StaticNodeIdFactory in figure 4.1) to allow our nodes to regain recently assigned
IDs.

4.1.1 The driver class

The driver class implements the main method of the HiSbase application. It is the main
method’s duty to configure the FreePastry environment — in our case especially the time

HiSbase

LocalHiSbase

DistHiSbase

Application

HiSbaseApp

NodeIdFactory

StaticNodeIdFactory

Figure 4.1: The P2P-infrastructure in HiSbase
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source, the logging and the file containing the FreePastry parameters —, instantiate a new
driver object using the configured environment and let the driver object create at least
one new pastry node object.

During the development of HiSbase we have implemented two different driver classes:

• DistHiSbase
A driver class for a P2P system with single nodes on different computers in a dis-
tributed environment communicating via TCP/IP.

• LocalHiSbase
A driver class for a P2P system with multiple nodes within a single java virtual
machine on one computer.

Both driver classes have been derived from the class HiSbase which supplies the common
attributes and methods used in the subclasses.

4.1.2 The application class

The class HiSbaseApp implements the Application interface provided by FreePastry. At
least three methods have to be implemented in this class to provide the basic messaging
functionality:

• deliver
The deliver method is invoked when an incoming message is intended for the local
node.

• forward
The forward method is called when an incoming message has to be routed by the
local node to the destination node.

• update
The update method is invoked when another node has either joined or left the
neighbourhood set.

In our case, the deliver method verifies that the received message is of the correct type
and does the further processing according to the visitor pattern. It calls the message’s
process method which has to be available in all messages derived from the HiSbaseMsg
class. A detailed discussion of the different kinds of messages will follow in section 4.2.
The forward method just returns true to allow all of our messages to be routed over all
nodes. The update method is currently only used for diagnostic purposes to keep track of
other nodes joining and leaving the neighbourhood set.

4.1.3 The node ID factories

For typical projects, FreePastry either assigns the node IDs at random or based on the
IP address of the node. For HiSbase, the assignment of IDs is of special interest, because
it determines how many histogram regions will be maintained by a node. To distribute
the histogram regions nearly equally among all nodes, it is useful to assign IDs at regular
intervals to the nodes. Neither the random node ID factory nor the IP address-based node
ID factory support these regular intervals.

In addition, the random node ID factory also does not ensure the reassignment of the
same ID to a node when the node has to restart. Assigning a new ID to an “old” node
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Figure 4.2: The message hierarchy of HiSbase

forces a change to the set of assigned regions on up to five nodes: The node rejoining the
HiSbase network, the two former neighbours, and the two new neighbours. All these five
nodes would have to go through the data staging process which consumes time.

This leads to the implementation of a static node ID factory which allows us to configure
a permanent node ID that will survive reboots of a node and therefore minimize the number
of nodes affected by changes to the region assignment.

4.2 Message exchange

As already mentioned in section 4.1.2, the HiSbaseApp class is responsible for message
routing and delivery. To simplify the implementation of the message processing at the
destination nodes, we derived our own abstract base class HiSbaseMsg from FreePastry’s
Message class. The HiSbaseMsg class defines the abstract method process, which allows
the HiSbaseApp’s deliver method to check the incoming message object for being an
instance of the HiSbaseMsg class and – if so – just call the process method as mentioned
in section 4.1.2. In addition, the HiSbaseMsg adds an attribute and get/set methods to
retrieve the node handle of the node originally sending the message.

Based on the HiSbaseMsg class, a set of message classes as shown in figure 4.2 has been
derived. The HiSbaseHelloMsg has only been implemented for diagnostic purposes during
development. The QueryMsg, AnswerMsg, and ErrorMsg are abstract base classes for the
transport of queries, answers to queries and errors during query processing. Due to the
steps in message processing which are pictured in figure 4.3 and 4.4 on page 27, each of
them has to be implemented in at least two flavours: The Full...Msg message above
processing by the coordinating node and the Partial...Msg message beneath processing
by the coordinating node. In addition, the query message also has to be implemented in a
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Figure 4.3: Steps during successful processing of a query. I is the node where the query
has been installed, at node P (which is usually identical to I) the query has
been prepared, C is the coordinator (and usually identical to D1) and Di are
the nodes involved in processing the query.

third flavour as PreparedQueryMsg occurring after the preparation of the query but before
coordination.

4.3 Handling queries

In HiSbase queries can be installed at each participating node. We will call this process
injection and in figure 4.3 the node where a query is injected is denominated I. I now
constructs a FullQueryMsg object containing the query, a query ID consisting of the
query’s hash value and I’s node handle as source.

4.3.1 Query preparation

The FullQueryMsg constructed at I is then processed by the prepareQuery method of
the Coordinator class1. Currently this preparation step also takes place at I, but this
may be changed in the project’s future, so in figure 4.3 we call the node in the preparation
step P . The prepareQuery method extracts the RA/DEC window from the query and
translates it into a set of regions covered by the query. Using the set of covered regions, we
then choose the coordinator C which will query all covered regions individually and wait
for their results to merge them and return the complete result. Please note that we always
route QueryMsg objects to regions and not to nodes, because on the one hand FreePastry
does not know the IDs of all nodes and on the other hand a HiSbase node does not know
the assignment of regions to the other nodes. A HiSbase node does not even know the
total number of nodes participating in the HiSbase network.

1Note that the Coordinator class not only holds the query coordination task but also all other steps of
the message exchange during query processing.
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In addition, during preparation, we have to rewrite the cross-match predicate XMATCH(cat-
alogue1,catalogue2,error) within the issued query expression as shown in listing 4.1
into native SQL. This allows us to directly execute the query expression as explained in
section 4.3.3.

1 query = query.replaceAll(
2 "\\s*xmatch \\(\\s*([a-zA-Z]+[0 -9]*)\\s*,\\s*([a-zA-Z]+[0 -9]*)" +
3 "\\s*,\\s*([0 -9]+.?[0 -9]*)\\s*\\)\\s*",
4 "Ã(abs($1.ra-$2.ra)<caseÃwhenÃabs($1.dec)+$3Ã>Ã89.9ÃthenÃ180" +
5 "ÃelseÃdegrees(abs(atan(sin(radians($3))Ã/" +
6 "Ãsqrt(abs(cos(radians($1.dec -$3))Ã*"+
7 "Ãcos(radians($1.dec+$3 )))))))ÃendÃandÃabs($1.dec -$2.dec)<$3" +
8 "ÃandÃ($1.x*$2.x+$1.y*$2.y+$1.z*$2.z)<cos(radians($3)))Ã"
9 );

Listing 4.1: Rewriting the cross-match predicate with a regular expression in Java

1 query = query.replaceAll(
2 "ra\\s+between \\s+(\\+?[0 -9]+(?:\\.[0 -9]+)?)\\s+" +
3 "and\\s+(\\+?[0 -9]+(?:\\.[0 -9]+)?)",
4 "(ÃraÃbetweenÃ0ÃandÃ$2ÃorÃraÃbetweenÃ$1ÃandÃ360Ã)Ã"
5 );

Listing 4.2: Rewriting wrap-around queries with a regular expression in Java

For the coordinator election, we first determine the intersection of the set of regions
covered by the query and the set of regions maintained at P . If the resulting set is not
empty, we know that P maintains one of the queried regions and hence P should do the
coordination of the further processing itself (now denoted as C in figure 4.3) to reduce
communication between HiSbase nodes. Otherwise, we elect the node maintaining the first
region covered by the query as coordinator C. A more sophisticated coordinator election
will be discussed in chapter 7.

After electing the coordinator C, a PreparedQueryMsg object is constructed containing
the same attributes as the FullQueryMsg object before and additionally the set of covered
regions. The PreparedQueryMsg is then sent to C.

4.3.2 Query coordination

Arriving at C, the PreparedQueryMsg is processed by the coordinateQuery method of
the Coordinator class. The coordinator C is liable for querying all regions covered by the
query, collecting their results, and finally merging the results and sending them back to I.
In order to be able to collect the results of all regions, C has to remember the number of
regions covered by a query. This is done in a HashMap called queryRegions which maps
the query’s ID to the number of regions with still due results.

Initially the cardinality of the set of regions covered by the query is assigned to the
query’s ID in the map. C then constructs a PartialQueryMsg with the attributes of
the PreparedQueryMsg. The former message’s source attribute becomes a new attribute
originalSource and the node handle of C will become the new source attribute. The
resulting PartialQueryMsg is then sent to each of the regions covered by the query,
which usually results in one query being sent multiple times to one node as each node
usually maintains several regions. In the example in figure 4.3 the nodes receiving the
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PartialQueryMsg are called D1 to D4, in the further text we will use Di, because HiSbase
is not limited in the number of nodes participating in a query.

4.3.3 Query processing

Assuming that the node Di has received a PartialQueryMsg, this will be processed by the
processQuery method of the Coordinator class. As already mentioned in section 4.3.2
we have to expect the same PartialQueryMsg to be received multiple times. Hence,
we will use a HashMap called seenQueries which maps the IDs of the already received
queries to the timestamp of their first reception. This allows us to detect repetitions of
the same query and to silently ignore the duplicates. To keep the HashMap within an
acceptable size, it is cleaned up during each processQuery call. During this clean-up, all
entries belonging to queries received before a configurable amount of time (and therefore
expected to be completely processed and delivered back to C) will be removed from the
HashMap. In the unlikely case that an entry has been removed too early, we might receive
duplicate results.

Now, after reducing the chance of processing a query more than once, we create
a new QueryProcessor thread for the received PartialQueryMsg and start it. This
thread at first calculates the number of local regions covered by the query – the so-
called weight – which is necessary later on as an attribute of the PartialAnswerMsg.
Then it calls the queryDatabase method of the DbManager class, which returns a
SerializableResultSet object. The SerializableResultSet class allows us to serialize
the data of a java.sql.ResultSet object. Using the SerializableResultSet object, the
query ID and the already mentioned weight, a PartialAnswerMsg is then constructed and
sent to the source of the PartialQueryMsg which is again C.

4.3.4 Collecting answers

The PartialAnswerMsg from Di to C will be processed by the coordinateAnswer method
of the Coordinator class. At first, the query ID of the answer message is compared to all
query IDs known by queryRegions. As already mentioned in section 4.3.2, queryRegions
maps the IDs of the queries which are currently being processed to the number of re-
gions with outstanding results. If the query ID of the answer message is not found in
queryRegions we can silently discard the PartialAnswerMsg because the corresponding
query has already been completed.

Assuming that the PartialAnswerMsg has not been discarded, we need to deter-
mine if it has been the first answer or one of the subsequent answers. In the latter
case the SerializableResultSets of the previous answers have been buffered in the
partialAnswerBuffer HashMap. The buffered results can be retrieved by using the query
ID as key to the HashMap. After that, we will append the received answer to the buffered
results using the appendResultSet method of the SerializableResultSet class.

Now we need to determine if we have already received all outstanding answers. This
is done by retrieving the number of still outstanding regions from the queryRegions
HashMap which has been introduced in section 4.3.2 and decrementing its value by the
value of the weight attribute (mentioned in section 4.3.3) of the received PartialAnswerMsg.
If after decrementing the value reaches zero we have received all PartialAnswerMsgs for
our query and are now able to create a FullAnswerMsg object equipped with all answers
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Figure 4.4: Steps during erroneous processing of a query

from the buffered SerializableResultSet and send the message back to the node I where
the query has been injected at the beginning. In addition, we can clean up both HashMaps
queryRegions and partialAnswerBuffer.

After receiving the FullAnswerMsg at node I, the current implementation just writes
the SerializableResultSet to the standard output. More sophisticated options for the
presentation or formatting of results will be discussed in chapter 7.

4.3.5 Handling errors

Despite of having a functioning setup for the processing of queries in HiSbase, we also have
to implement some error handling during SQL-query processing. Without error handling,
a user injecting a faulty query into HiSbase would have to wait infinitely for his answer.
Furthermore the memory consumption in the various HashMaps of the Coordinator class
would increase with each error because errors on certain nodes prevent us from receiving
all expected answers and hence from sending the FullAnswerMsg and cleaning up the
HashMaps.

Errors can occur on the nodes Di during SQL-query processing in case of syntactic prob-
lems, malfunctions of the database management system installed at node Di, or problems
with the JDBC driver accessing the database. In these cases, the QueryProcessor thread
on Di will catch a SQLException or ClassNotFoundException, write an error message
to the node’s log file and send a PartialErrorMsg including the query ID and the error
message back to the coordinating node C.

Arriving at C the PartialErrorMsg is processed by the coordinateError method of
the Coordinator class. At first it checks if the query causing the error is one of the
queries currently being coordinated. This is done by searching the query ID as key in the
queryRegions HashMap. If there is no matching entry, the query is unknown to C which
indicates that it has already been aborted by another PartialErrorMsg. In this case we
can silently discard the PartialErrorMsg.
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Figure 4.5: Two spatial objects lying next to a border between regions

If there is a matching entry which means that the query is (still) known to C, we
cancel further coordination of the query by removing the entries in queryRegions and
partialAnswerBuffer having the query’s ID as key. After that, a FullErrorMsg again
containing the query ID and the error message is sent to the node I which has injected
the query.

4.4 Data staging

The process of data staging has already been mentioned in chapter 3 with a focus on the
detection of changes to the set of regions maintained by the local node and hence the
necessity to run through the data staging process.

In this section we will focus on the steps after the decision whether to re-stage or not.
The real work is done by the StagingManager class and its updateLocalData method.
The updateLocalData method loops over the set of regions maintained by the node. For
each of the regions, it creates a SpatialArea2 object and calls its getSQLConditionString
method which returns a string with a SQL condition describing the region in equatorial
coordinates.

To support cross-correlation, we had to implement an additional functionality within
the previous step. As already mentioned in section 4.3.3, the query processing and hence
the cross-correlation is done on each node itself. Due to the variances between different
catalogues, we can run into situations where objects from different catalogues which should
get caught by cross-correlation will be placed in different regions and on different nodes
as shown in figure 4.5. This would lead to missing results depending on the queried areas.
To handle this problem, the getSQLConditionString adds a frame of configurable size to
each region and therefore the data objects next to borders will also be transferred to the
local node during the staging process. This allows each node to do the cross-correlation
independently from the other nodes. In the worst case this approach will lead to duplicate
results for the same objects, which can easily be filtered during further processing.

The individual SQL conditions returned from getSQLConditionString are then com-
bined to one large SQL condition describing all the node’s regions. An example for a SQL

2The SpatialArea class is a geometry helper class providing translation operations from HiSbase regions
to Cartesian coordinates and vice versa.
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condition representing the regions 5, 6, and 7 in figure 4.6 is shown in listing 4.3.
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Figure 4.6: The regions of a HiSbase system before translation to SQL conditions

1 select *
2 from catalogue
3 where ra between 90 and 135 and dec between 22.5 and 45
4 and ra between 135 and 180 and dec between 22.5 and 45
5 and ra between 0 and 90 and dec between 45 and 90

Listing 4.3: SQL condition representing a set of regions

After that, another loop over all spatial catalogues calls updateLocalCatalog from the
DbManager class with the catalogue’s name and the SQL condition string as parameters.
The updateLocalCatalog method connects to the database archive and queries it for
the catalogue with the spatial areas described by the SQL condition string and then
calls populateCatalog with the catalogue’s name and the result set of the query just
mentioned. The populateCatalog method connects to the local database, empties the
table representing the currently processed catalogue, and then adds the data from the
result set in configurable chunks. We only add the data in chunks because this allows us
to prevent congesting the logs of the local database.

Please note that the data staging process can be time consuming depending on the
size of the catalogues and the region assignments of the participating nodes. During the
staging, a HiSbase node currently is already able to accept and process queries but the
results will not be complete.
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Chapter 5

Evaluation

The major goal of the HiSbase project is to realize an increased throughput of queries. In
this chapter we will first describe the evaluation setup used for measuring the throughput.
Then we will present and discuss the results of the evaluation.

5.1 Setup

For the evaluation, we first had to decide which scenarios should be compared and which
amount of data should be handled in each scenario depending on the available equipment.

We decided to compare a HiSbase network with 16 nodes running on consumer class
PCs each with 0.5 GB of memory to a standalone HiSbase node running on a server class
computer with 2 GB of memory. This allowed us to utilize the server class computer as
database archive for the 16 nodes during the staging process and hence reuse the same
data. Each computer has been equipped with IBM DB2 Version 8.2.1.

Subsets of the SDSS [SDS07] (84,323,326 entries), ROSAT [VAB+99] (25,617,873 en-
tries), and 2MASS [SCS+06] (28,445,694 entries) catalogues have been chosen as data,
imported into separate tables on the database archive, and staged onto the 16 nodes. The
tables for these catalogues bear a cluster index on the columns (RA, DEC) to support
faster queries with conditions on these attributes. In addition we used the DB2 command
runstats to create full statistics on these tables which allows the DB2 optimizer to reduce
the access times again.

The necessary histogram has been created using a data set gained with the DB2 ta-
blesample command from all three catalogues as shown in listing 5.1. Due to our good
experiences with the Z-quadtree histograms, we preferred them over the Z-curve. The
resulting Z-quadtree histogram contains 208 regions.

1 select ra, dec from sdss tablesample bernoulli (0.1)
2 union
3 select ra, dec from twomass tablesample bernoulli (0.1)
4 union
5 select ra, dec from rosat tablesample bernoulli (0.1)

Listing 5.1: Extraction of tablesamples from subsets of SDSS, ROSAT, and 2MASS

During the first start-up of the network containing 16 nodes, we used the automatic ID
assignment. Later on we reassigned the nodes to the previous IDs, in order to not repeat
the time-consuming staging process which has not been subject of our evaluation.

The set of queries for our evaluation has again been gained with the tablesample func-
tionality of DB2. We extracted randomly chosen objects from the ROSAT and 2MASS
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Node first region last region regions
1 0 13 14
2 14 28 15
3 29 43 15
4 44 53 10
5 54 69 16
6 70 85 16
7 86 95 10
8 96 106 11
9 107 119 13
10 120 133 14
11 134 146 13
12 147 154 8
13 155 169 15
14 170 184 15
15 185 197 13
16 198 207 10

Table 5.1: Regions assigned to the 16 nodes

4.15°

4.10°

20.85° 20.90°

(20.866°,4.1112°)

Figure 5.1: Generating query regions for the evaluation

catalogues and searched the SDSS catalogue for matches within a certain rectangular area
around the objects from ROSAT or 2MASS. The resulting 730 entries have been used to
generate the RA- and DEC-regions for our evaluation queries by rounding the RA- and
DEC-coordinates off and up to the next multiple of 0.05 (three arc minutes) as shown
in figure 5.1 and using the resulting RA- and DEC-intervals as query region. Listing 5.2
shows one of the queries used during the evaluation. We used the formulation with sub-
queries for each catalogue in order to force the optimizer to do an index-based scan on
RA and DEC without using DBMS-specific optimization hints. For each of the nodes, we
shuffled the 730 queries.

1 select * from (
2 select * from sdss
3 where ra between 112.15 and 112.20
4 and dec between 35.70 and 35.75
5 ) s1 left outer join (
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Figure 5.2: Processed queries at one peer within a specified time interval

6 select * from twomass
7 where ra between 112.15 and 112.20
8 and dec between 35.70 and 35.75
9 ) s2 on xmatch(s1, s2, 0.005 ) left outer join (

10 select * from rosat
11 where ra between 112.15 and 112.20
12 and dec between 35.70 and 35.75
13 ) s3 on xmatch(s1, s3, 0.005 )

Listing 5.2: HiSbase query expression which cross-matches three catalogues

We define the throughput as the number of queries returning results within a specified
time span divided by the time span. In addition, HiSbase is able to process multiple
queries at the same time, so we have to determine the throughput for different amounts
of parallel queries — the so-called multi-programming level. An example with a maximum
of ten parallel queries at one peer is shown in figure 5.2. The timestamp t1 indicates the
beginning of our measurement interval after the designated multi-programming level of
ten has been reached and t2 indicates the end of the interval when the multi-programming
level is about to decrease because we have reached the end of the query batch. Each
of the vertical bars represents a worker thread and the bar’s segments represent queries.
The length of each segment indicates the processing time of the related query. The red
segments depict the queries which complete within our measurement interval while the
blue ones will complete after its end.

We need to identify t1 and t2 individually for each tested multi-programming level
based on the log files written by HiSbase during its operation. At first we can extract all
timestamps of queries being injected at the local HiSbase node. For a multi-programming
level of m we know that the multi-programming level will be reached after m injections,
so we can skip the first m − 1 timestamps to determine t1. The decrease of the multi-
programming level begins when the last query has been injected, so the last timestamp
is t2. Now we extract the timestamps of finished queries and count all timestamps from
t1 to t2. This gives us the number n of results during the observed time interval. The
throughput for the node is then n

t2−t1
.

To calculate the throughput for the whole network of 16 nodes, we need to determine
the latest t1 and earliest t2 of all nodes and then count the number of results within the
interval from t1 to t2 on all nodes.
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Figure 5.3: Throughput increase with HiSbase

5.2 Results

We ran our tests on the HiSbase network consisting of 16 peers (the green results in
figure 5.3) with 730 queries and multi-programming levels of 1, 10, 20, 30, 40, 60, 100,
120, 140, 160, 180, and 200 at each node. In addition we ran tests which repeated the
730 queries once on each peer and hence injected 1,460 queries at each node for the multi-
programming levels 250, 300, 350, 400, 450, and 600.

On the standalone HiSbase node we ran tests with 730 queries and multi-programming
levels of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 60, 80, 100, 120, 140, 160, 180, and 200 (the
red results in figure 5.3).

It is easy to see that the maximum throughput of the HiSbase network with 16 nodes
is far more than 16 times the throughput of a standalone HiSbase node which indicates
a super-linear speedup. In addition, the maximum throughput on a standalone node
is reached with a multi-programming level between 5 and 10 while throughput of 25.13
results per second on the network with 16 nodes is reached with a multi-programming
level of about 600 on each peer hence about 9,600 for the whole network. Since we did
not accomplish tests with multi-programming levels above 600, we cannot rule out that a
still higher throughput can be achieved on the network with 16 nodes.
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Chapter 6

Conclusion

During this work we have discussed the development of the HiSbase prototype allow-
ing storage, processing, and retrieval of locality-aware data in a distributed peer-to-peer
environment. This gives scientists the ability to form so-called virtual organisations in
which each participant provides its own computing and storage resources and can use the
resources made available by the other participants.

The astrophysical catalogues for which HiSbase has been initially designed contain highly
skewed data. HiSbase handles this skew by using a subset of the data to create a histogram
during a training session. An abstract interface allows us to support different histogram
types, e. g. equi-depth histograms or Z-quadtrees. Instead of individual data objects, every
histogram region including all its data is mapped onto the key space of the underlying
peer-to-peer system FreePastry [FP07] to preserve locality.

Scientists can query the distributed catalogues using a SQL-based syntax to formulate
queries at any participating node. After preparing the issued query, all regions covered
by the query are determined, a coordinating node is selected, and the query is sent to
the coordinator which splits up the query and sends it to all covered regions. Each node
maintaining at least one of the covered regions queries its local database and sends the
results back to the coordinator which combines all results and sends them to the node
where the query has been injected.

In astrophysics, cross-correlating data from different catalogues is an important opera-
tion. HiSbase allows scientists to combine the data from different catalogues by applying a
cross-match predicate to a query. This cross-match predicate offers the possibility of join-
ing two catalogues and retrieving only those data objects from the second one which are
within a certain neighbourhood to data objects from the first catalogue. Using multiple
cross-matches, more than two catalogues can be combined. The possibility of correlating
data from several large catalogues features an instrument which allows scientists to obtain
new results based on existing information.

HiSbase kind of sorts the injected queries by distributing them among the individual
nodes holding the requested data. This allows to preserve locality and to process the
queries in parallel instead of sequentially. This results in an increased need for computing
equipment which can be satisfied using already installed systems on the one hand but
allows a much higher throughput with fairly moderate technical requirements as shown in
our evaluation in chapter 5 on the other hand.

Although the intended application of HiSbase is supporting astrophysicists in accessing
and combining data from different astrophysical catalogues, it is possible to utilize HiSbase
for other scientific fields, e. g. meteorology or geography. The wide applicability of HiSbase
shows that computer science has become a key discipline supporting other scientific fields.
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Chapter 7

Future work

Now that we have done a first step evaluating our prototype, it is time to look ahead
at the next possible steps in its development. Some of the upcoming points are already
planned, others are just ideas about new features that could be needful for the e-science
community.

7.1 Median-Z-quadtrees

As already mentioned in the previous chapters, our first approach to partitioning the
spatial data used the Z-curve. This allowed us to get equi-depth histograms out of a
representative subset of the spatial data. The geometric overhead going hand in hand
with the Z-curve histograms lead us to Z-quadtrees which allowed us much easier handling
due to their regular shapes. Unfortunately with Z-quadtree histograms compared to the
Z-curve the filling level of each bucket will differ to a greater extent from the other buckets,
as shown in figure 7.1. In addition, data concentrating in one or few “hot spots” can lead
to Z-quadtrees with one branch going deeper and deeper, as seen in figure 7.2 on the next
page. This increases the cost of looking up the regions affected by a query.

As a possible solution we figured out the concept of Median-Z-quadtrees where we
quarter a region no longer at its geometric centre but at a point defined by the median on
each dimension. Using this technique, the growth of the tree can focus faster on highly
populated regions and therefore reduce the overall depth of the resulting tree, as shown in
figure 7.3 on the following page.

Figure 7.1: Spatial area, organized as Z-quadtree, split after more than 9 points in one
bucket
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Figure 7.2: Spatial area with a local density and a resulting Z-quadtree

Figure 7.3: Spatial area with a local density and a resulting Median-Z-quadtree
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B

A C

Figure 7.4: HiSbase network processing a query which covers the yellow marked regions.
Node A acts as coordinator, B has to send its results to A.

7.2 Alternative coordinator selection

With a growing number of participating nodes in the HiSbase network and growing phys-
ical distances between the nodes, a deliberate selection of the coordinator will get more
important. Depending on this selection, network load in the sense of partial result sets
being routed between the nodes can be saved or increased, which can directly influence
the network’s performance and the operating cost.

Our current approach in selecting the coordinator depends on the regions affected by a
query. The node at which the query is injected into the network calculates the affected
regions. If it holds one of the affected regions itself, it will become the coordinator. This
already helps reducing network load, because it is likely that a user injects the query into
the network at a node which is close to him. If the node does not hold any of the affected
regions, it will choose the node holding the first affected region as coordinator as shown
in figure 7.4. In some case, this can increase network load.

The alternative approach will not choose the node holding the first affected region, but
the node holding the middle region (see figure 7.5). In this case, it is very likely that the
chosen node not only holds the middle region, but also several regions above and below.
This increases the amount of regions queried at the coordinator and decreases the amount
of regions queried at other nodes. Therefore the size of the answers from the other nodes
to the coordinator and consequently the network usage are reduced.

7.3 Alternative staging techniques

Due to the focus on query processing in this thesis and the main goal of developing a
HiSbase prototype for first presentations, we implemented a rather simple staging mech-
anism. Each node first cleans up its local database to remove all entries originating from
a previous run. The node then uses the histogram to calculate the spatial areas for which
it will be responsible. After this calculation is done, the node queries a database archive
for those spatial areas and inserts them one after another into its local database.

For adapting to later changes in the HiSbase network caused by leaving or joining nodes,
this procedure is automatically repeated when a node observes changes within its direct
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Figure 7.5: The same situation but now node B acts as coordinator and the data being
delivered from A to B is now clearly reduced.

neighbourhood. To prevent these automatic updates from occurring too often during
network instabilities, they will not be executed directly after the observed changed but
with a specific delay. This delay allows an unstable network to “calm down” before the
local data is updated.

Obviously, this staging mechanism is not adequate for a big scenario with possibly thou-
sands of peers. One or several central archives would be overwhelmed with all the parallel
requests from the nodes updating their data. To resolve this problem, we considered
different approaches using advanced or streaming techniques.

7.3.1 Advanced data staging

The currently implemented data staging can be extended to reduce load on the central
archives and distribute the overhead of staging on other nodes. When an additional node
enters the HiSbase network, it can contact both neighbouring nodes, request their local
database settings, and utilize their databases as archive. After retrieving the data from its
neighbours, the node has to signal them that they may now “forget” those spatial areas.

Another advantage can be implemented when a node leaves the HiSbase network. In-
stead of restaging the whole data, both nodes neighbouring the leaving node can determine
the newly gained regions and only fetch their data from the central archives.

7.3.2 Streaming the data

The streaming approach assumes that there are several archives, each of them storing the
data of one spatial catalogue. Some of the archives might be databases allowing SQL-
queries while others might just be CSV (comma-separated values) files. A HiSbase node
located close to an archive can access the archive and send the data row by row into the
HiSbase network in regular intervals. The already existing routing mechanism of HiSbase
can be adapted to ensure that each data row gets routed to the node holding the related
spatial area. This technique would guarantee nodes getting updated information from time
to time without overwhelming one or more archives but new nodes joining the network for
the first time might have to wait some time until they are properly equipped with their
data.
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Another streaming approach can be used as an enhancement to speed up delivery of data
to new nodes. Existing nodes already monitor the underlying Pastry layer for changes in
their direct neighbourhood. These changes can result from new nodes joining the network
or nodes leaving the network or experiencing failures. In the first case, the new node joining
the network will inherit some of the regions of its direct neighbours. Both nodes directly
neighbouring the new node can observe the change in their neighbourhood and calculate
the regions they have “lost” to the new node. All data rows belonging to these regions
can then be streamed to the new node using the technique described above. This allows a
HiSbase network to handle joins without having to wait for the archives to republish their
data. Only the case when nodes leave the network can not be handled easily.

7.4 Exchanging histograms between participating nodes

Currently every HiSbase node participating in a network has to have the histogram file
to correctly initialize its own data and route locally injected queries to the coordinator.
The prior manual replication of the histogram file can be time-consuming and vulnerable
to mistakes. In addition, discrepancies between histogram files can cause consistency
problems when queries are injected at the node using the faulty histogram.

A possible solution would be that only the first node uses a local histogram file and
the other nodes acquire a copy from its bootstrap node or its direct neighbours. This
eliminates the necessity of distributing the histogram file to all nodes before launching
the network and — as a spin-off — removes the associated consistency problems because
all nodes automatically use the same histogram file. The other configuration parameters
of a HiSbase network can also be exchanged during the bootstrap procedure to a limited
extent.

7.5 Connecting clients

Although being desirable not all potential users of the HiSbase system will be able to share
their storage and computing resources. Users might have limitations on their resources or
experience security restrictions at their institutes. Consequently it will not be possible for
these users to take part in the system as a regular HiSbase node. In this case, we will need
a possibility of injecting queries into a network and retrieving the results using one of the
regular nodes.

This could be done by offering a secured connection to a HiSbase node including the
necessary authentication. Using this connection, scientists can inject queries at the HiSbase
node and wait for the results as shown in figure 7.6. Moreover, this could lead to a stricter
separation between well equipped HiSbase servers organized in a peer-to-peer network
doing the query processing and regular office computers allowing users to access the data.
Furthermore the HiSbase servers could buffer incoming results of an issued query until the
requesting scientist contacts the server again and retrieves the result.

7.6 Configuration of output formats and files

The current implementation returns results of queries in a simple ASCII presentation as
shown in listing 7.1. Although being human readable, such a format is not very suitable
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Figure 7.6: Several clients connecting to a HiSbase network with four nodes

for further processing. To allow the further processing of data retrieved from a HiSbase
network, it would be desirable to write the results into files and convert them into more
sophisticated formats like XML or CSV.

RA DEC OBJID
--------------------------------------------------------
43.0028805407238 0.0532208965953161 582104534777266605
43.0073125412446 0.0571183304587983 582104534777267027
43.0105129536098 0.074731940838761 582104534777266433
43.0105129559039 0.0747319310339798 582104534777266432
43.0121250100818 0.070822639284091 582104534777266869
43.012647146706 0.0575093823663683 582104534777266627
43.0137587716116 0.05257379681051 582104534777267031
43.014699813568 0.054560408797727 582104534777266630
43.0155633938737 0.0551062842858088 582104534777266631
43.0155635377075 0.0551056695489369 582104534777266629
43.0183998713865 0.0554794262627254 582104534777267034
43.0190408732614 0.062027069640759 582104534777267035
43.0197552285185 0.0691341278595079 582104534777267037
43.0207281633403 0.066583239237338 582104534777267038
43.0240778701781 0.0579166456854712 582104534777266645
43.0241068185943 0.0596235445365354 582104534777266643
43.0245649485094 0.0731968795573173 582104534777266883

Listing 7.1: Raw ASCII output of a query’s result

Alternative output formats could be implemented as filters which transform the results
into the desired format. Using a pluggable architecture for those filters, each scientific
domain, institute, or even user could supply and use user-defined filters.
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7.7 Handling query hot spots

In addition to data skew, a HiSbase network might also experience query hot spots when
a huge number of queries targets the same spatial region and is therefore routed to the
same HiSbase node. A simple solution to this problem would be to record issued queries
over some time and use them for later refinement of the applied histograms. The queries
could be used by the histogram trainer just as any other spatial object and hence allow the
trainer to separate a bigger region which experiences query hot spots into several smaller
regions. This can be easily implemented but does not offer any load balancing. It only
reduces the probability of receiving queries apart from the hot spot on a node suffering
from a hot spot.

Another solution offering limited load balancing would be to position multiple database
servers at each HiSbase node suffering from query hot spots. This would not improve
locality because these multiple database servers do not share their main memory, but it
would improve parallelism during processing. More possible solutions with multiple HiS-
base nodes being responsible for the intensively queried regions would require extensions
of the underlying peer-to-peer network, allowing the same keys — for the same regions —
to be stored more than once.
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